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Abstract

OMG’s Model-Driven Architecture (MDA) has emerged
as a new approach for the development of software. For
this, the Query/View/Transformation (QVT) standard plays
a central role, since it allows for the specification of model
transformations. Nevertheless, until now, QVT-tool support
in general and debugging support in particular in the context
of MDA are rather limited, supposable being a reason,
that the adoption of QVT in practice has not yet been
achieved. We therefore propose graphical debugging for
the QVT Relations language based on TROPIC - a model
transformation approach on the basis of Coloured Petri
Nets. By enabling debugging on the TROPIC level, one
gains several advantages when developing transformations.
Firstly, debugging can take place at a high level of ab-
straction. Secondly, it serves for explicating the operational
semantics of a transformation. Thirdly, it provides a ho-
mogenous representation of all transformation artifacts. As
a first step towards QVT debugging, this paper aims at a
deeper understanding of the operational semantics of QVT,
classifying common pitfalls by using QVT and discussing
how they may be identified at the TROPIC level.

1. Introduction

OMG’s Model-Driven Architecture (MDA) [1] has
emerged as a new approach for the development of software,
placing models as first-class artifacts throughout the software
lifecycle. Thereby a collection of standards arose, whereby
Query/View/Transformation (QVT) [2] plays a central role,
allowing for the specification of model transformations. The
QVT standard specifies three sub-languages for transforming
models, being the declarative high-level Relations and the
low-level Core languages and the imperative Operational
Mappings language extending the two previous ones in order
to express more complex transformations, challenging to be
described purely declaratively. Although the QVT standard
claims that the operational semantics of the QVT Relations
language is specified by a mapping to the low-level QVT
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Core language, the actual meaning thereof is very hard to
grasp, possibly being a reason that the pragmatics of the
language in order to transform models, i.e., how to use the
QVT Relations language, is poorly understood. Moreover,
until now, QVT-tool support in general and debugging sup-
port in particular are still in its infancy [3] supposable being
one of the reasons, that the adoption of QVT in practice has
not yet been achieved. The main problems are firstly, that the
debugging process today takes place on a considerably lower
level of abstraction and therefore transformation designers
have to cope with an impedance mismatch between the high-
level design time, i.e., QVT Relations code, and the low-
level runtime in terms of the underlying execution engine.
Secondly, since the QVT Relations language is declarative
in nature, the operational semantics remains hidden to the
transformation designer unless the tool supports an explicit
runtime model. And thirdly, information offered by current
execution engines is limited with respect to the current
transformation state, i.e., only variable values as well as
logging messages from the execution engine are offered.

We therefore propose graphical debugging for the QVT
Relations language based on our TRansformations On Petri
nets In Color (TROPIC) framework [4], [5], [6], which has
been developed in the course of the ModelCVS project [7]
in order to enhance the understanding and debugging of
model transformations. By accomplishing the debugging on
the TROPIC level, one gains several advantages. Firstly, it
allows for the debugging on a high level of abstraction,
thereby overcoming the impedance mismatch between the
high-level specification and low-level execution of QVT
Relations code. Secondly, it allows for the debugging on
the basis of an explicit runtime model, making explicit the
afore hidden operational semantics. Thirdly, it allows for
a homogeneous representation of all artifacts involved in a
transformation, including metamodels, models and the ac-
tual transformation logic itself, thus offering comprehensive
information about the current transformation state.

The remainder of this paper is structured as follows.
Section 2 motivates the need for debugging support by
means of a simple example. Generalizing from this simple
example, Section 3 proposes a classification of potentially
emerging pitfalls when using the QVT Relations language.
Section 4 investigates related work and finally, Section 5



concludes this paper with an outlook on future work.

2. Graphical Debugging for QVT Relations
In this section we show on the basis of a very

simple example, namely a snippet of the well-known
Class2Relational (http://sosym.dcs.kcl.ac.uk/events/mtip05)
transformation (cf. Figure 1), that the understanding of the
operational semantics is far from being a trivial task even
for very simple examples like this. Nevertheless, it allows
us to demonstrate the benefits of employing TROPIC for
identifying the incorrect usage of QVT Relations.

Thereby, the Class metamodel has been reduced to the
concepts Package consisting of Classes, whereby a
Class has a name and can be marked as being persistent
(cf. upper left box of Figure 1). The Relational meta-
model comprises the equivalent concepts, being Schema
and Table (cf. upper right box of Figure 1). Furthermore,
the bottom part of Figure 1 illustrates an example input
model (left side) and a desired output model (right side) of
the transformation process, which reveals that only persistent
classes should be transformed into tables.
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Figure 1. Class and Relational Metamodels and Models

2.1. Potential Realizations of the Running Example

The left part of the Figures 2, 3 and 4 present three
QVT Relations realizations of the example described above,
which transformation designers might come up with in a first
shot, whereas only one of them produces the desired result.
In order to spot the right transformation and to identify
the incorrectness in the wrong ones, one has to resort to
the limited debugging facilities of existing QVT Relations
implementations (cf. Section 4 for a detailed discussion).

Therefore, we employ in this paper graphical debugging
for the QVT Relations language based on TROPIC. Thereby
all transformation artifacts get represented into one single
view, whereby metamodels and models get represented as
places and tokens, respectively, and the actual transformation
logic is embodied by means of transitions in the petri net.
For implementing the transition firing behavior, we employ
color patterns which can be seen as variables which are
bound to the colors of incoming tokens. For details of how
to use color patterns for implementing transformation logic,
we kindly refer the interested reader to [6].

2.1.1. Realization I: Multiple unrelated top relations.
One first attempt of solving the example described above
could be the realization I shown in Figure 2. Thereby,
two relations PackageToSchema and ClassToTable
- marked as being top - are defined. The TROPIC view
depicted right aside of the QVT Relations code makes
explicit the operational semantics. Thereby, each relation
is translated into a corresponding TROPIC unit, contain-
ing two transitions, whereby the first of these—(a) and
(c)—are responsible for producing the domain objects, i.e.,
Schema and Table instances, respectively, and the second
of these—(b) and (d)—are responsible for mapping the
structural features of the respective domain objects, i.e., at-
tributes and references as described by the domain patterns.

Taking a brief look at the resulting output marking of the
TROPIC view, representing the instances of the target meta-
model, one can see that this is obviously not the intended
result, since, e.g., the place Table contains four tokens
instead of just one, i.e., four tables have been generated.
But since it is not always that easy to recognize a wrong
output model, especially if the model size is growing larger,
an interesting point is, if we could spot any incorrectness
of the transformation specification already in the TROPIC
transformation logic.

One potential bug in this realization, that can be
spotted quite easily, is that the two TROPIC units
PackageToSchema and ClassToTable work entirely
independent of each other since there is no arc between
them, giving a hint that there might be a missing when
or where clause, respectively, connecting the two relations.
Therefore, the resulting output model will contain model
elements which are unconnected to each other. This can be
verified on the target side of the TROPIC view, since there
are three tokens in the place Table (C1, C2, C3), which
have no corresponding tokens in the Schema_tables
place, i.e., the connection to the schema is missing.

Another part in the TROPIC view that could cause scep-
ticism is the transition (b), since a new color (the shaded
one) is occuring in the outplacements, i.e., the element in
the target domain pattern was not bound by a variable to
the element of the source domain pattern. This could have
been of course intended by the transformation designer if she
wanted to create an object that has no direct correspondence
to a source model element, but in our case this is not
intended since there is a direct correspondence between the
element Class and the element Table.

A further source of distrust is that the place
Table has two incoming arcs, i.e., both relations
(PackageToSchema and ClassToTable) generate
elements of this type. Therefore, if the two relation
conditions do not select disjoint subsets, the resulting
output model could potentially contain elements twice. This
is in fact the case in our example, since the tokens Cx and
C1 in the place Table both originate from the class C1.
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Figure 2. Potential Realization I and the Translation in the Corresponding TROPIC View

Therefore, such a case gives a strong indication to inspect
the conditions of the two relations critically, if they really
select disjoint subsets of the incoming places.

Another interesting source of debugging information can
be found in the trace places of the TROPIC view. Having
a look at the trace place of the ClassToTable TROPIC
unit, one can see, that it contains three tokens, representing
the three classes transformed into tables. Having in mind,
that only one class of the input model was marked as being
persistent, the condition of the transition is obviously too
weak, giving a hint to review it.

2.1.2. Realization II: Calling relation is too weak with
respect to the called relation. After having realized
that the two relations must be interrelated by a when
or where clause, a second attempt to obtain the desired
result could be the realization II as depicted in Figure
3. Thereby, again two relations PackageToSchema and
ClassToTable have been defined, but this time only
the relation PackageToSchema is marked as being top,
whereby the relation ClassToTable is invoked in the
where clause of the former. Right of this code example,
the resulting TROPIC view is depicted. Again each relation
is translated into a corresponding TROPIC unit, whereby
only the PackageToSchema TROPIC unit contains two
transitions (again one for the domain object mapping and
one for the structural feature mapping), since the second
relation ClassToTable does not have to generate a do-
main object as this is already done by the calling relation
PackageToSchema. Therefore, only one transition for the
mapping of the structural features is required.

Having a look at the output, one can detect that this is
again not the desired result, since, e.g., there are three tokens
in the place Table instead of just one.

At first sight, no error can be detected within the TROPIC
view, but the inspection of the trace places highlights the
problem. The trace place, holding the tokens representing

the generated tables, contains three instead of just one.
Therefore it can be inferred that the condition of this
relation is too weak. Obviously, the condition of the relation
ClassToTable is more restrictive, since it lets pass one
token only, giving a hint, that this relation specifies the
correct strictness.

2.1.3. Realization III: Correct solution. After having
corrected this last bug by shifting the condition that only
persistent classes should be transformed into tables from the
relation ClassToTable into the calling relation, one could
come up with a correct solution as depicted in Figure 4. Fi-
nally, only classes, marked as being persistent, got translated
into a table with the corresponding structural features.

3. A Taxonomy of common QVT Pitfalls
In the course of the development of the graphical de-

bugging, knowledge about how to use or better not use
the language, has been gained by systematically varying
QVT Relation descriptions which led to a taxonomy of
common pitfalls (cf. Figure 5). We distinguish between intra-
relational pitfalls, concerning one relation only, and inter-
relational pitfalls, concerning more than one relation. In the
following each category is described in a pattern like style,
whereby foremost the pitfall is described succeeded by a
hint, how to spot this kind of pitfall in the TROPIC view.

3.1. Intra-Relational
3.1.1. Source domain pattern.
Wrong pattern condition. One basic pitfall is, that the
source domain pattern specifies a wrong condition, i.e., it
is either too weak resulting in too many object matches or
it is too restrictive resulting in too few object matches (cf.
eye-catcher 4 of realization I in Figure 2).
Detection in TROPIC: Inspect the trace places of the respec-
tive relations and compare the number of tokens residing in
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Figure 3. Potential Realization II and the Translation in the Corresponding TROPIC View
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it with the number of expected tokens. If it is too high, you
have an indication that the condition might be too weak and
if it is too low, that the condition might be too strict.
Wrong pattern granularity. Another pitfall concerns the
pattern granularity, i.e., the number of 1:n relationships
occurring in the pattern. Starting from the domain object,
only a simple 1:n relationship is permitted (e.g. between
Package and Class), since a further 1:n relationship (e.g.
between Class and Attribute) would lead to too many
matches which is very likely not intended.
Detection in TROPIC: Inspect the trace places of the respec-
tive relations and search for duplicates, i.e., tokens with the
same color. If you find duplicates, there is a strong indication
that there were too many matches.
3.1.2. Target domain pattern.
Wrong connection to source domain pattern. A further
pitfall may occur if the target domain pattern is wrongly con-
nected to the source domain pattern by missing or incorrect
variable assignments (cf. eye-catcher 2 in Figure 2).
Detection in TROPIC: Compare the colors of the tokens on

the left side with the colors of the tokens on the right side
of a transition. If you detect additional colors on the right
side, then these objects have not been bound by variables.
Wrong pattern granularity. As on the source domain
pattern side, also on the target domain pattern side more
than one 1:n relationship leads to too many matches since
the correlation between the source and target is lost.
Detection in TROPIC: Inspect the trace places of the respec-
tive relations and search for duplicates, i.e., tokens with the
same color. If you find duplicates, there is a strong indication
that there were too many matches.
3.2. Inter-Relational
3.2.1. Source domain patterns.
Calling relation is too weak with respect to the called
relation. If the source domain pattern of the calling relation
specifies a less restrictive condition than the one of the called
relation, then this can lead to objects in the output model
that lack structural features, i.e., attributes and references,
as created by the called relation (cf. realization II in Figure
3, where only class C1 has a name).



Detection in TROPIC: Inspect the trace place, holding the
tokens for the domain object and compare the number of
tokens to the number of tokens in the target place of a
structural feature produced by the called relation. If tokens in
the place of the structural feature are missing (e.g., you have
three Class tokens but only one Class_name token),
then you have an indication that the condition of the called
relation is too restrictive.
Calling relation is too restrictive with respect to the
called relation. If the condition of the calling relation is too
restrictive (cf. wrong pattern condition) then the structural
features as created by the called relations are absent too in
the result.
Detection in TROPIC: Inspect the trace place, holding the
tokens for the domain object and compare the number of
tokens to the number of expected tokens. If it is too low,
you know that the condition is too strict and that also the
called relations are affected by this pitfall.
Missing specification of parts. If none of the source domain
patterns of the relations match a certain part, i.e., certain
metamodel elements, then this part will not participate in
the transformation process and therefore will not result in
any model elements on the target side.
Detection in TROPIC: Search for source places that have no
arc to any transition. If you find any, then you know, that
these parts do not participate in the transformation process.
Redundant specification of parts. If more than one source
domain pattern matches a certain part, then this can lead
to redundant parts on the target side unless the conditions
match disjoint subsets.
Detection in TROPIC: Search the target places for du-
plicates, i.e., same-coloured tokens, and search for source
places that have more than one arc originating from it. If
you find such a situation, then you have an indication, that
there are parts specified redundantly.

3.2.2. Target domain patterns.
Missing specification of parts. As on the source side, also
on the target side some parts may be missing, i.e., they are
not specified by any relation.
Detection in TROPIC: Search for target places that have no
arc from any transition. If you find any, then you know, that
these places do not participate in the transformation process.
Redundant specification of parts. Again as on the source
side, if some parts are specified more than once by the target
domain patterns, then these parts will be produced several
times (cf. eye-catcher 3 of realization I in Figure 2).
Detection in TROPIC: Search the target places for duplicates
(same-coloured tokens) and search for target places that have
more than one incoming arc. If you find such a situation,
then you know, that there are parts specified redundantly.

3.2.3. Coherence between relations.
Multiple unrelated top relations. If several unrelated
top relations are specified, i.e., without any when clause

between them, then they work entirely independently of
each other, resulting in unconnected parts in the output
model. This can be intended, if the input model consists
of unconnected parts too, but normally this won’t be the
case (cf. realization I in Figure 2).
Detection in TROPIC: Search for TROPIC units that have no
connection to a trace place of another TROPIC unit. If you
find such a situation, then you know, that there are relations
that work independently of each other.
Wrong connection style. A question that inevitably arises
is deciding between calling a relation in a when clause or
a where clause, respectively, and deciding when to mark a
relation as being top.
Detection in TROPIC: Inspect the trace places of the rela-
tions and compare the number of tokens residing in it with
the number of expected tokens. If it is incorrect, then there is
a strong indication that the relations are wrongly connected.
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Figure 5. A Taxonomy of Common QVT Pitfalls

4. Related Work
We distinguish between three kinds of related work:

firstly, related work concerning QVT Relation tool support,
secondly, related work concerning our methodology using a
translational approach, i.e., transforming QVT Relations into
other representations, and thirdly, related work concerning
methods for debugging model transformations.

QVT Relation environments. QVT Relation tool support
has been developed but as mentioned in [3], it is still
in its infancy. The most advanced tool is Medini QVT
(http://projects.ikv.de/qvt) which provides debugging
features. However, these features are based on the typical
Eclipse debugger and are therefore considerably limited.
In particular, the debugger only allows to inspect variables
in a certain execution state and logging messages from



the execution engine are shown. This makes it hard to
recognize what is really going on during a transformation,
because neither the output model nor the trace model
can be accessed before the transformation has been
finished. Other QVT Relation tools are ModelMorf
(http://www.tcs-trddc.com/ModelMorf) and MOMENT-
QVT (http://moment.dsic.upv.es/content/view/34/75/), but
no information about debugging features could be found.

Translational Approaches. Several translational ap-
proaches have been proposed for executing QVT Rela-
tions on top of existing technologies. Jouault and Kurtev
[8] propose to execute QVT Relations within the ATL
Virtual Machine (ATL VM), by transforming QVT Rela-
tions into ATL VM code. Romeikat et al. [9] propose to
transform QVT Relations into QVT Operational Mappings
and execute the result with QVT Operational tools such
as SmartQVT (http://smartqvt.elibel.tm.fr/). These two ap-
proaches transform QVT Relations into code which is on
a lower level of abstraction and are therefore not suit-
able for debugging. Greenyer and Kindler [10] propose
to transform QVT Relations into Triple Graph Grammars
(TGGs) which can be executed in TGGs tools such as
Fujaba (http://wwwcs.upb.de/cs/fujaba). Because QVT Rela-
tions and TGGs are conceptually and also syntactically sim-
ilar, one can remain on the same abstraction level. However,
the debugging problem is only shifted, because TGGs are
not directly executable within existing tools. Again, TGGs
have to be translated into executable instructions which are
not suitable for debugging.

Debugging transformations. To the best of our knowl-
edge, there is only one work regarding the debugging of
model transformations. Hibberd et al. [11] present forensic
debugging techniques for model transformations by utilizing
the trace models of model transformation executions for
determining the relationship between source elements, target
elements, and the involved transformation rules. With the
help of such trace models, they are able to answer debugging
questions implemented as queries which are important for
localizing bugs. In addition, they present a technique based
on program slicing for further narrowing the area where
a bug might be located. The work of Hibberd et al. is
orthogonal to our approach, because we are using live
debugging techniques instead of forensic. However, with our
approach it is also possible to answer most of the debugging
questions they raise based on the visualization of the path a
source token has taken to become a target token.

5. Conclusion and Future Work
In this paper, we have proposed graphical debugging

for QVT Relations based on TROPIC. By accomplishing
the debugging on the TROPIC level, one gains several
advantages, being, firstly, the high level of abstraction,
secondly, the explicit operational semantics and thirdly, the
homogenous representation of all transformation artifacts.

This was also the basis for a deeper understanding of the
operational semantics of QVT as well as of its pragmatics
which led to a classification of common pitfalls.
Several further steps of future work remain, comprising:

Prototypical Implementation. After having formulated the
mapping of QVT Relations to TROPIC on a conceptual
level, a first prototypical implementation is currently estab-
lished in order to experiment with a set of testcases.

Integration of OCL. One part of QVT Relations, that has
been neglected so far, is the OCL part thereof used especially
for describing queries. Further investigations should clarify,
how to incorporate this part, i.e., as black-box or white-box.
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